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Vibration ~encrated  by small Stirlins-cycle cryococdcrs  is an important ccmccrn for spacecraft
designers planning to incorporate tbcsc cryocoolcrs into near-term space-scicncc instruments.
{Jndcr joint Air l:orcc/BMl10  and NASA 1 ios/AIIIS Instrument sponsorship, JJ’I. has an.
cxtcnsivc ongoing cryoc.oolcr cbarac.tcri~.ation  prof,ram adctrcsscd to mcasurinp,  tbc important
cryocoolcr  performance characteristics such as sc.lf-gcncra(cd vibration; these nlcasurcmcl~ts
provide the intcrfacc  and trend data nccdcd by insti umcnt  designers as well as valuable feedback
for improving cryocoolcr performance.

Self-generated vibration has bcenmcasurcd  at JP1. for a wide variety of Stirling cryocoolcrs,
flol~~c  arlycllgi]~ccril  ~gdcvclopl~~cl~tl  ~~odclcoolcrs to flightcoolcrs.  l’hcsc data, whc~l.viewed
as a wbolc, provide insight into a variety of generic cryocoolcr  vibration trcncls.  Data arc
prcscntcd for sensitivity of cryocoolcr vibration to opcrat ional  parameters such as st rokc and
clrive frequency, to different harmonic cancellation approaches, and to the influcncc of tbc
stiffness of the cooler structural mount. ‘1’hc data
as WCI1 as for tbc moment about tbc drive axis.
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are prcscntcd for all three translational axes

As parl of J]’] .’s overall cryocoolcr cbaractcri~,at  ion program sponsored jointly by the Air
1 ~orcc/llallistic  Missile IIcfcnsc  Organization (IIM1X3) and the NASA llar(h  Observing System
AIRS Instrunlcnt Project, a variety of state-of-tbc-art space Stirling cryocoolcrs have been tested
for tbcir vibration attributes [1 ,2]. I’bis paper (iiscusscs  tbc vibration behavior of several
Stirling-cyc]c cryocoolcrs designed for Iong-]ifc spacecraft cooling in the 50 to 150 K
tcmpcraturc  range. All incorporate ftexurc springs and clcarancc  seals in (bc Oxford-cooler
tradition to prevent wear and prolong life, ‘1’his feature separates tbcm from tbc less cxpcnsivc
tactical  Stirlin:  cryocoo]crs that usc piston rubbing, as tbc means of guiding tbc piston ancl
{iisp]accr  in Ibcir Cy]indcrs. ‘1’hc tested coolers arc designed to usc identical back-to-back
compressor or displacer pairs, or an active mass countcrbalanccr, to achicvc momentum
compensation in tbc active piston/displacer clrivc  direction. All arc cicsignccl  to bc powered by
sophisticated drive clcc.tronics  incorporating active vibration control algorithms based on force,
accc]cration, or piston position feedback; none p] ovidc active control over vibration norms] to
the piston/displacer drive axis.
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Mo]tmntum  compcnsa(cd  cryocoolcr  configuratio]]s  fall into (hrcc generic classes shown
schematically in l:ig. 1. ‘1’hcsc include (1) two separate coolers (consisting of a single
compressor and sing]c disp]accr) n~oL]n(cd back-to-back, (2) a cooler having two scpara[c  back-
to-back compressors mallifoldcct  into a single hcliuln  transfer line feeding a single displacer, and
(3) a single cooler havins two back-to-back compressor pistons sharing a common compression
space conncctcd  to a sing]c displacer. ‘J’hc latter two configuratiol]s usc an active mass balanc.cr
to suppress the vibration of the single displacer. ‘l’es[cd  coolers that fall into these categories
include: (1) the lIAc 80K and 50-80K coolers and the 1 nckhccd/1 .ucas 65K SCRS cryocoolcr,
(2) tl]c Stirling Tcchnolof,y  Company (STC) 80K Tl)h4 cryocoolcr,  and (3) the IIughcs 65K SS(0
cryocoo]cr ancl the Jmckhccd/I .ucas 171 OC cryocoolcr,  rcspcctivc]y.

MI; ASUI{lHW1lN’1’  AITROAC}l

in cllaractcri?,ing  cooler-gcncratcd vibration it is useful lo speak in terms of tbc peak vibratory
force imparted by the cooler into its supports when rigidly mounted. This force is lhc reaction
force to moving masses within the cooler that undcl  p,o peak accelerations during various phases
of the cooler’s opcrationa]  cycle. “J’hc accelerations can bc from controlled motion such as the
rcciprocat ing sinusoidal motion of the Stir] ing compressor piston and displacer, or from natural
vibratory rcsonancm of tlic cocdcr’s elas(ic structural clcmcnts. Sensitive spacecraft instruments
dictate that such force lCVCIS bc on the orctcr of O,?. N or ICSS in any direction.

Compressor and displacer rcsonancc and vibration characterization measurements arc made with
the cooler mounted in J]’1 ..’s spccia]l  y const  ructcd  six-dcgrcc-of-freedom force cl ynamomctcr
(IJi~. 2), lhc dynamometer is instrumented with six load CCIIS whose amplified output signals
arc rccordcd in real time using a spectrum ana]yz,cr ‘J’hc cooler component not currcnt]y under
charactcriz,ation  is rigidly mounted to an adjacent ~ igid structure to minimize transmission of
vibration from this component to the component under test. ‘1’}]c JPI, dynamometer has a useful
frequency range from 10 J IZ to 500 IJz and a fore.c scmit ivity from 0.005 N to 445 N full scale.
Passive viscoclastic  damping techniques arc employed to minimize coupling of tbc cooler
vibration into the dynamometer support structure resonances during the mcasurcmcnts,

WIIC.1)  discussin~  cooler vibration sensitivities it is useful to divide the generated vibration into
at least four catcgorics: 1) the vibration in the piston drive direction (Z-axis for the JP1.
dynamometer) at the fundamental drive frequency of the cooler, 2) vibration it~ tl]c 7,-axis drive
direction at upper harmonics of the fundamental drive frequency, 3) vibration in the lateral,
cross-axis directions (X and Y axes), which arc perpendicular to the drive axis, and 4)
oscillatory twisting about the spindle axis caused by the flcxurc springs winding and unwinding
as they arc stroked longituciinal]y.

‘1’hc vibration characterization rcsu]ts prcscntccl  in tl]c remainder of this paper arc displayed ili
the form of spectra] plots of force in each of the tl]rcc principal axes, ancl moment about the
spindle-stroke (7,) axis. Most plots arc paramctcrimcl with respect to a variab]c of interest to
ilhninatc  a particular parameter sensitivity. Scmit ivity studies are prcscntcd  for compressor
and clisp]accr stroke amplitude, pcr[urbation of tllc drive frccjucncy  ancl piston ccntcring,,
cryogenic versus room coldtip tcmpcraturc,  and dcp,rcc of back-to-back and active harmonic
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canccllaticnl.  ‘1’hc individual plo[s have been choscl]  as mpmcntative
wit]) really coolers, and arc drawn from over 1000 slmctra gathered

of generic trends observed
flO1ll ] ~ COO] CI’S.

\~lI\]<A’J’]ON CI]AI{AC’J’IC1{ lS’J’ICS ()]~ A SIN(;1 ,1; COM1’I{KSSOR

Stroke Sensitivity

Wifhout momcnhm  cancellation, the vibration of a sil@c cooler in the drive axis (Z-axis) at the
fundamental drive frequency is lincar]y proportional to the maximum piston acceleration and the
nloving mass. l;or sinusoidal motion, it is thcrcfm c lincar]y proportional to the piston drive
amplitude ancl to the square of the drive frcc]ucncy. ‘1’his classical behavior is seen in the ctata
for the IIAc 80K and 50-80K  coolers as shown in I Jigs.  3 and 4.

in contrast to the fundamental vibration in the ctrivc  axis, vibration at higher harmonics and in
tbc cross axes is caused by subtle non-] incar attributes of the cooler. The parameters thought
to bc primarily rcsponsib]c for the higher order and cross-axis vibration harmonics include
nonlincarities  in tbc drive motor and sprin!, stiff ncsscs as a function of stroke, and the strokc-
dcpcndcnt internal resonant frcqucncics coincidin~  with a harmonic of the drive frequency, As
various structural rcsonancc modes get cxc.itcd at cliffcrcnt  st rokc amplitudes and frcqucncics,
v~bration  levels can change abruptly. Note the OJ dcr of magnitude ehangcs in the high~order
harmonics of the lIAc coolers in l~igs. 3 and 4 as tl~c compressor stroke amplitude is changcct
in 1 -mm increments. ‘JSllis  is typical for coolers of this type, Note also t}lat the funciatncnlal
shape of the vibration spectra is similar for the two lIAc coolers, even Ibougb  the piston
cliamctcls  and moving n]asscs  arc quite different, ‘1’hc spcct ra in later plots for other types of
coolers will bc seen to llavc different shapes.

Sensitivity (0 Stroke. Offsds

] ‘igures  5 illustrates the sensitivity of the vibration spectra of the 13Ac 50-80K cooler to slight
longitudinal offsets of the piston around its ncutra] sjwing position. C)vcrall  the effects arc small,
but CIOSC  examination reveals order of magnitude changes for individual sclcctcd  harmonics.

~Scnsitivity  to l’crturbations  in the l)rivc Frequency

“1’hc cooler drive frequency is gcncra]ly  scJcctcd to optimiz,c the thermal performance of the
cooler. While thcrii~al  performance changes very 1 it tlc over a narrow range of frcqucncics, the
vibration lCVCIS  caused by cxcjting  htcrnal  and external structural resonances can vary
significantly; tbcsc  structural resonances often have. important implications on the performance
of the cooler in its host application. IJigure 6 dcsc~ ibcs the IIAc SO-80K compressor’s vibration
scnsit ivit y to pcrturbat ion of the drive frequency by 1-117, increments around its nominal value.
As with the piston offset, the overall effects arc s]nall,  but C1OSC examination reveals order of
lnagnitudc changes in individual sclcctcd harlnonics.

\711]RA’1’JON  NUI,I,ING WJ’J’11  lJACK-rJ’O-l\ACK COM1’ltItSSORS

‘1’hc most straightforward approach to supprcssinp,  cooler vibration is to mount two coolers back-
to-back or together with an active balanccr to ])rovidc momentum canccllatjon.  Previous
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mcasurcmcnts  have colifirmcd [hat this tcclmiquc works reasonably well for the first two
l~armonics, but can Icavc modcs[ dcgrccs  of rcsiclual vibration in the cross axes and upper
harlnonics [ 1 ,3]. l;ig,utcs 7 and 8 illustrate tllc ]csiciual vibration mcasurcci  for the Stirling
‘J’cclmo]ogy 80K cooler and ti~c 1 Dckhcc(i-]  .ucas SCXS cooler. ‘1’hc rcsictua]  vibration for tilcsc
coolers is quite similar to earlier data on back-to back BAc 80K coolers [1]. Note that ti~c
fun(iamcntai  (irivc-axis  vibration has been nuiicd to a high dcgrcc as wouid  bc required for a
sensitive space-instrument application; however, considcrab]c upper harmonic vibration remains.
Aiso note the stron~ sensitivity of the rcsi(iual  vibrtition  to the slrokc ampli(ucic;  this foliows  the
trcn(is seen in Uigs. 3 and 4 for tile IIAc coolers .

Sensitivity to Cold-tip ‘J’cmpc.ratorc

IIccausc a cooler may operate at different cold-tip tclnpcraturcs in different app]icat  ions, it is
impor(ant to understand the manner in which the gcncratcd  vibration changes with cold-tip
t cmpcrat  urc. l~igurc 9 dcscribcs the minimai  cl~angc  commonly seen over the range of
tcmpcraturcs  from room temperature down to 60K and below; i .c., there is no strong
tcmpcraturc  effect.

Sensitivity  fo l’crlurbal ions in the ]h”iv(! ]hquwcy

IIccausc of the localized sensitivity to drive frcqucllcy  noted above, it is useful to examine tlic
effect of smali perturbations of the drive frequency o]) ti]c abiiity  of compressor halves to nu]i
onc another. 1 ligurc 10 dcscribcs the effect of 2-1 lZ frequency perturbations about the nominal
56-I Iz, drive frequency of the lmckhccd  SC3<S cooler. “J’hc effect is measurable, but overall
ratllcr moclcst. ~’his is typical for most coolers me.asurc[i.

I)ISIBI.ACIH{ VII]I{KJ’JON,  SINGI ,11 AN]) BACK-rJ’O-l]ACK

in p,cncral,  vibration sensitivity of a the Stirling (iisplaccr  is foun(i to closely parallel the trends
found for the compressor. 1 lowcvcr, tile vibration force ICVCIS  arc gcncraily lower duc 10 the
smaller moving mass. l;igurcs 11 an(i 12 iiiustl atc the vibration g.cncratc(i  by the single
(i isplaccr of a 13Ac 80K cooler and the back-lo-back pair of (i isplacers  of the I mckhccd-1  .ucas
SC3{S cooler, Note that the displacer vibration ICVCIS  arc significantly lower than those for tllc
compressors, and that the displacer vibration is modestly sensitive to the soIIlpIessor  stroke,

Ovcr the past fcw years considcrab]c  progress IIas been made in the cicvclopmcnt  of vibration
control (irivc electronics dcsignc(i  to suppress the large vibrational forces of the first fcw
harmonics in tbc axial drive direction [4,5]. Although, vibration suppression on the order of
2.0 to 40 d]] has been rcpcatcd]y  demonstrated, suppression of the axial vibration has been foul~ci
to have lit[lc or no effect on canceling ra(iial vibration components. l;xamplcs of the lCVCI  of
vibration control using force feed-back is shown in l~ig.  13 for the S“J’~ cooler, an(i 1 ~ig, 14 for
thC  ] ]U@)CS  65 K SSc  COO]C1’.
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(lyocxm]cr vibration control drive ckc[r’onics work Iwst under conditions whcm S~l-UCtLIHi]

resonances of the cooler  supporl lic WC]] away froln the 10 to 500 ~ IZ frequency range where
the kcy cooler gcncratcd  vibrational harmonics occur. ‘1’0 avoid configuration specific rcsu]ts,
nlcasurcmqnt test Setups such as tbc J]’]. dynalnomctcr  also try to keep the test Systcln
resonances outside of this frequency region,

1 lowcvcr,  when the cooler is integrated ill[o a practical spacecraft ins(rumcnt, tl]c instrumcn(  will
bavc numerous structural resonances in tbc 100- to 500-1 IZ range. It is likely that onc or more
of the cooler harmonics will coincide with tbcsc S(I uctural  rcsonanccs, thus leading to possib]c
control stabi]i(y  issues.

A second important ramification of the fini(c s[ifflms of the spacecraft/cooler intcrfacc is the
likelihood of significant transmission of vibration bctwccn the compressor and disp]accr via the
transfer line, thermal conductance straps, and intc.grating structures. With the disp]accr  and
compressor driven phase synchronously at the same frequency, it is likely that the drive
electronics will find it difficult to discriminate bctwccn the two units and maintain stable
vibration control.

‘1’o address these questions, a series of spcciaj  tc.sts have bcc]i conductc{l at J1’1. with tbc
dynamometer “soft-mounted” on springs as a means of simulating a practical spacecraft
instrument structure. The soft mounted dynamolnctcr  provides the ability to dctcrminc the
robus[llcss  of the cooler electronics vibration canccl]at  ion algori(bms to flexible spacecraft modes
in the frequency range of interest. The resonances of.the soft dynamometer, noted in I~ig. 15,
can bc adjusted in botb amp] it udc and frequency by changing the st iffncss of the springs and/or
by adcling clamping mass to the dynamometer structu]  c. ‘J’his allows a dynamometer rcsonanc.c
to bc aligned with a drive harmonic of the cooler ul)dcr test to simulate a worst-case operational
condition.

A 1,ockhccd-1 .ucas 1710 c.oolcr having force feed -bac.k vibration control was USCC1  in a series of
pathfinder cxpcrimcnts, While on tbc rigidly -mourltcd  clynamomctcr  the force feed-back loop’s
~,ain  and phase were adjusted to provide optimm  vibration suppression. With the cooler still
mounted in the dynamometer, the spring mounts were instal]cd  under the dynamometer, and
prcloadcd to give a desired ICVCI of stiffness. A dyl]amomctcr  rcsonancc was gcncratcd at 235
1 lz,, bctwccn tbc fourlb  and fifth harmonic of tbc coo]cr drive frequency. ‘J’hc cooler was able
to operate in a stable condition, although the vibration Icvcl of the fourlb and fifth harl~lonics
were at higher ICVCIS tJlan  mcasurccl  on the ri~id dy~lalnon~ctcr. 1 lowcvcr,  when the c.oolcr drive
frequency was adjusted to have tbc fourth harmonic. coincide with the (iynamomctcr rcsonancc,
the cooler drive electronics went unstable. ‘1’hc cooler COUIC1 achicvc  stable operation once tllc
gain and phase of the force fccclback  loops were ~ cadjustcd to cancel out the four[b  harmonic
of tl]c vibration, but at the cxpcnsc of vibratiol~  suppression of the other harmonics. A
coml)arison  of the COOICI vibration spcc[ra for these. tbrcc conditions is shown in 1 jig. 16.
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SUNIMA1<Y ANI) CONCI ,LJS1ONS

Meeting the performance goals of near-tcrll) sl)acc-scicncc  ins(rumcnts  places demanding
rcquircmcnts  on long-life space Sfirling-cyc]c  coolers. Achieving acceptably low lCVCIS  of
vibration from the cooler remains onc of the most c.llallcnging.  l>cvclopmcnt  cffor[s with active
vibration control electronics have ctcmonstratcd  modest gains in reducing the cooler-gcncratcd
axiat  vibration lCVCIS, but control stability remains an issue to be demonstrated. Vibration
suppression of coo]cr-gcncratc(i  radial vibrations is an area requiring much attention if overall
cooler vibration ICVCIS arc to be rccluced  to the 0.02-N ICVCI for spaceborne operation. ‘1’l]c
ability to achicvc  stable vibration control of COOIC] operation over a range of cirivc  frcqucncics
ncccssary  to minimize interaction with instrument resonances will greatly enhance tbc chance
of successful operation in space.

‘1’hc work described in this paper was carried out by the Jet l’repulsion lxiboratory,  California
lnstitutc  of Technology, and was sponsored jointly by tbc l~Ds/AJRS instrument and by tbc
IIallistic Missile l)cfcnsc  organization through al] agrccmcnt bctwccn  the Air l~orcc Phillips
1 iabmatory  and tbc National Aeronautics and Space Administration.

‘1’hc authors wish to cx~mss their gratitude to Scott 1 ~land for his extensive tccbnical  help in
preparing the cxpcrimcnts,  and to IHizabctb  Jcttcr for skillfully preparing the many figures in
this manuscript.
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Fig. 11. Displacer vibration spectra for the British Aerospace 80K cooler as
a function of compressor stroke.
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